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Total Acceleration, Convective Acceleration, and Angular velocity

Problem 1

For the velocity field:

V = 2xyî+ 4tz2ĵ − yzk̂

find the acceleration, the angular velocity about the z-axis, and the vorticity vector
at the point (2,−1, 1) at t = 2.

Solution

Compute Acceleration

The total acceleration is given by:

a =
DV

Dt
=

∂V

∂t
+ (V · ∇)V

where:
- ∂V

∂t
is the local acceleration. - (V · ∇)V is the convective acceleration.

Local Acceleration:

∂V

∂t
= 0̂i+ 4z2ĵ + 0k̂

Convective Acceleration:

(V · ∇)V = (4xy2 + 8txz2)̂i+ (−8tyz2)ĵ + (−4tz3 + y2z)k̂

At (x, y, z, t) = (2,−1, 1, 2):

a = 40̂i+ 20ĵ − 7k̂
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Compute Vorticity and Angular Velocity

The vorticity vector is:

ζ = ∇×V

ζ =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

2xy 4tz2 −yz

∣∣∣∣∣∣
Expanding the determinant:

ζ = î

(
∂(−yz)

∂y
− ∂(4tz2)

∂z

)
+ ĵ

(
∂(2xy)

∂z
− ∂(−yz)

∂x

)
+ k̂

(
∂(4tz2)

∂x
− ∂(2xy)

∂y

)
Computing derivatives:

∂(−yz)

∂y
= −z,

∂(4tz2)

∂z
= 8tz

∂(2xy)

∂z
= 0,

∂(−yz)

∂x
= 0

∂(4tz2)

∂x
= 0,

∂(2xy)

∂y
= 2x

Thus,

ζ = (−z − 8tz)̂i+ (0− 0)ĵ + (0− 2x)k̂

ζ = (−z − 8tz)̂i− 2xk̂

At (x, y, z, t) = (2,−1, 1, 2):

ζ = (−1− 16)̂i− 4k̂

ζ = −17̂i− 4k̂

The angular velocity vector is given by:

Ω =
1

2
ζ

Ω =
1

2
(−17̂i− 4k̂)

Ω = −8.5̂i− 2k̂

Final Answers

Acceleration:

a = 40̂i+ 20ĵ − 7k̂

GATE PATHSHALA GATE PATHSHALA GATE PATHSHALA



Vorticity:

ζ = −17̂i− 4k̂

Angular velocity:

Ω = −8.5̂i− 2k̂

Problem 2

What is the equation of the streamline that passes through the point (2,−1) when t = 2
s if the velocity field is given by:

(a) V = 2xyi+ y2tj m/s

(b) V = 2y2i+ xytj m/s

Solution

Understanding the Streamline Equation

The equation of a streamline is given by:

dx

u
=

dy

v

where u and v are the velocity components in the x- and y-directions, respectively.

Consider Each Case Separately

Case (a): Velocity Field V = (2xy)i+ (y2t)j

Here, the velocity components are:

u = 2xy,

v = y2t.

At t = 2, the velocity components become:

u = 2xy,

v = 2y2.

The streamline equation:

dx

2xy
=

dy

2y2

Canceling common terms:

dx

xy
=

dy

y2

Rearrange:
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dx

x
=

dy

y

Integrate both sides:

ln |x| = ln |y|+ C

or

x = Cy.

Using the initial condition (x, y) = (2,−1):

2 = C(−1)

C = −2.

Thus, the streamline equation is:

x = −2y.

Case (b): Velocity Field V = (2y2)i+ (xyt)j

Here, the velocity components are:

u = 2y2,

v = xyt.

At t = 2, the velocity components become:

u = 2y2,

v = 2xy.

The streamline equation:

dx

2y2
=

dy

2xy

Canceling 2:

dx

y2
=

dy

xy

Rearrange:

x dx = y dy.

Integrate both sides:

x2

2
=

y2

2
+ C.

or
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x2 − y2 = C.

Using the initial condition (x, y) = (2,−1):

22 − (−1)2 = C

4− 1 = 3.

Thus, the streamline equation is:

x2 − y2 = 3.

Final Answer

• For Case (a): x = −2y

• For Case (b): x2 − y2 = 3

Problem 3

Write all the non-zero terms of Dρ/Dt for a stratified flow in which:

(a) ρ = ρ(z) and V = z(2− z)i

(b) ρ = ρ(z) and V = f(x, z)i+ g(x, z)j

Solution

Understanding the Material Derivative

The material derivative of density, Dρ/Dt, is given by:

Dρ

Dt
=

∂ρ

∂t
+V · ∇ρ

Since the problem specifies a stratified flow where ρ = ρ(z), the density does not
explicitly depend on time or x, y. This simplifies the material derivative to:

Dρ

Dt
= V · ∇ρ

where the gradient of density is:

∇ρ =
dρ

dz
k

Thus, the material derivative simplifies further to:

Dρ

Dt
= w

dρ

dz

where w is the velocity component in the z-direction.
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Case (a)

Given:

V = z(2− z)i

This velocity field has only an x-component, meaning:

w = 0.

Since the material derivative depends on the z-component of velocity and there is
none, we conclude:

Dρ

Dt
= 0.

Case (b)

Given:

V = f(x, z)i+ g(x, z)j

Since there is no k-component (w = 0), we again conclude:

Dρ

Dt
= 0.

Final Answer

For both cases (a) and (b), the material derivative of density is zero:

Dρ

Dt
= 0.

Problem 4

Decide if each of the following can be modeled as an incompressible flow or a compressible
flow:

(a) The take-off and landing of commercial airplanes

(b) The airflow around an automobile

(c) The flow of air in a hurricane

(d) The airflow around a baseball thrown at 100 mi/h
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Solution

To determine whether each case can be modeled as incompressible or compressible flow,
we use the Mach number (M):

M =
V

c

where:

• V is the flow velocity,

• c is the speed of sound in air (≈ 343 m/s at sea level).

A flow is typically considered compressible if M ≥ 0.3, since significant density
changes occur beyond this threshold. Otherwise, it is considered incompressible.

(a) Take-off and landing of commercial airplanes

• Typical speeds: 150–250 mi/h (67–112 m/s)

• Mach number: M = 112
343

≈ 0.33 (for upper limit)

• Since M ≈ 0.33, compressibility effects might start to appear, but for most engi-
neering purposes, this can be modeled as incompressible flow.

(b) Airflow around an automobile

• Typical speeds: 30–80 mi/h (13–36 m/s)

• Mach number: M = 36
343

≈ 0.1

• Since M ≪ 0.3, the flow can be modeled as incompressible.

(c) Flow of air in a hurricane

• Typical wind speeds: 75–200 mi/h (34–89 m/s)

• Mach number: M = 89
343

≈ 0.26

• Since M < 0.3, compressibility effects are negligible. This can be modeled as
incompressible flow.

(d) Airflow around a baseball thrown at 100 mi/h

• Speed: 100 mi/h (45 m/s)

• Mach number: M = 45
343

≈ 0.13

• Since M ≪ 0.3, this can be modeled as incompressible flow.
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Final Answer

Case Flow Type
(a) Take-off and landing of commercial airplanes Incompressible

(b) Airflow around an automobile Incompressible
(c) Flow of air in a hurricane Incompressible

(d) Airflow around a baseball at 100 mi/h Incompressible

Since all cases have M < 0.3, they can all be modeled as incompressible flows.

Problem 5

Select the word: uniform, one-dimensional, two-dimensional, or three-dimensional,
which best describes each of the following flows:

(a) Developed flow in a pipe

(b) Flow of water over a long weir

(c) Flow in a long, straight canal

(d) The flow of exhaust gases exiting a rocket

(e) Flow of blood in an artery

(f) Flow of air around a bullet

(g) Flow of blood in a vein

(h) Flow of air in a tornado

Solution

Based on the characteristics of the flow, we classify each case as follows:

Flow Type Classification
(a) Developed flow in a pipe One-Dimensional (1D)

(b) Flow of water over a long weir Two-Dimensional (2D)
(c) Flow in a long, straight canal Two-Dimensional (2D)

(d) The flow of exhaust gases exiting a rocket One-Dimensional (1D)
(e) Flow of blood in an artery One-Dimensional (1D)
(f) Flow of air around a bullet Three-Dimensional (3D)
(g) Flow of blood in a vein One-Dimensional (1D)
(h) Flow of air in a tornado Three-Dimensional (3D)
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Explanation

• (a) Developed Flow in a Pipe → 1D
Velocity varies radially but remains uniform along the pipe axis in fully developed
flow.

• (b) Flow of Water Over a Long Weir → 2D
The velocity varies in both vertical and horizontal directions.

• (c) Flow in a Long, Straight Canal → 2D
The flow is primarily in one direction, but velocity changes with depth.

• (d) Flow of Exhaust Gases Exiting a Rocket → 1D
Assuming a steady and streamlined exit, velocity varies only in one direction.

• (e) Flow of Blood in an Artery → 1D
Similar to pipe flow, blood flow is primarily along the artery’s axis.

• (f) Flow of Air Around a Bullet → 3D
The flow field around a moving bullet varies in all three spatial directions.

• (g) Flow of Blood in a Vein → 1D
Similar to an artery, blood flow is mostly along the length of the vein.

• (h) Flow of Air in a Tornado → 3D
The swirling motion creates velocity variations in all three spatial directions.

Problem 6

To determine the rate of change of temperature of a fluid particle, we use the material
derivative:

DT

Dt
=

∂T

∂t
+V · ∇T

Given:

• Velocity field:
V = 2yi+ xj+ tk

• Temperature field:
T (x, y, z) = 20xy

• Point: (x, y, z) = (2, 1,−2) at t = 2

Solution

Compute the Temperature Gradient ∇T

∇T =

(
∂T

∂x
,
∂T

∂y
,
∂T

∂z

)

GATE PATHSHALA GATE PATHSHALA GATE PATHSHALA



∂T

∂x
= 20y,

∂T

∂y
= 20x,

∂T

∂z
= 0

Thus,

∇T = (20y, 20x, 0)

At the point (x, y, z) = (2, 1,−2):

∇T = (20(1), 20(2), 0) = (20, 40, 0)

Compute the Convective Term V · ∇T

V · ∇T = (2y, x, t) · (20, 40, 0)

= (2(1) · 20) + (2 · 40) + (−2 · 0)

= 40 + 80 + 0 = 120

Compute the Total Rate of Change
Since T (x, y, z) is not explicitly dependent on t, we have:

∂T

∂t
= 0

Thus,

DT

Dt
= 0 + 120 = 120 ◦C/s
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Problem 7

Determine the velocity V in the pipe if the fluid in the pipe of Figure(p7) is:

(a) Atmospheric air and h = 40 cm of water

(b) Water and h = 20 cm of mercury

(c) Kerosene and h = 30 cm of mercury

(d) Gasoline and h = 80 cm of water

Figure 1:

Solution

Using Bernoulli’s equation between two points inside the pipe:

P1 +
1

2
ρV 2 = P2 +

1

2
ρ(4V )2

Rearrange:

P1 − P2 =
1

2
ρ(16V 2 − V 2) =

15

2
ρV 2

The pressure difference is also given by the manometer equation:

P1 − P2 = ρfgh

Equating both expressions:

ρfgh =
15

2
ρV 2

Solving for V :
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V =

√
2ρfgh

15ρ

where:

• ρ = 1.225 kg/m3 (air density)

• g = 9.81 m/s2

• ρf depends on the fluid used

• h is the height of the liquid column

(a) Atmospheric air, h = 40 cm of water

V =

√
2(1000)(9.81)(0.40)

15(1.225)
=

√
427.2 = 20.67 m/s

(b) Water, h = 20 cm of mercury

V =

√
2(13560)(9.81)(0.20)

15(1000)
=

√
3.54 = 1.881 m/s

(c) Kerosene, h = 30 cm of mercury

V =

√
2(13560)(9.81)(0.30)

15(800)
=

√
6.65 = 2.57 m/s

(d) Gasoline, h = 80 cm of water

V =

√
2(1000)(9.81)(0.80)

15(740)
=

√
1.41 = 1.18 m/s

Problem 8

A velocity field is given in cylindrical coordinates as:

vr =

(
4− 1

r2

)
sin θ m/s,

vθ = −
(
4 +

1

r2

)
cos θ m/s,

vz = 0.

Find:

1. The acceleration at the point (0.6 m, 90◦).

2. The vorticity at the point (0.6 m, 90◦).
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Solution

Compute Velocity at Given Point

Substituting r = 0.6 and θ = 90◦:

sin 90◦ = 1, cos 90◦ = 0,

vr =

(
4− 1

0.62

)
× 1 = 4− 1

0.36
= 4− 2.78 = 1.22 m/s,

vθ = −
(
4 +

1

0.62

)
× 0 = 0.

Thus, the velocity vector at this point is:

V = (1.22êr + 0êθ + 0êz) m/s.

Compute Acceleration

The material derivatives for acceleration in cylindrical coordinates are:

ar =
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

− v2θ
r
,

aθ =
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vrvθ
r

.

Partial Derivatives of vr

∂vr
∂r

=

(
2

r3

)
sin θ,

∂vr
∂θ

=

(
4− 1

r2

)
cos θ.

Substituting r = 0.6 and θ = 90◦:

∂vr
∂r

=
2

(0.6)3
× 1 =

2

0.216
= 9.26,

∂vr
∂θ

=

(
4− 1

(0.6)2

)
× 0 = 0.

Partial Derivatives of vθ

∂vθ
∂r

= −
(

2

r3

)
cos θ,

∂vθ
∂θ

=

(
4 +

1

r2

)
sin θ.

Substituting values:

∂vθ
∂r

= − 2

(0.6)3
× 0 = 0,

∂vθ
∂θ

=

(
4 +

1

(0.6)2

)
× 1 = 4 + 2.78 = 6.78.

Using vθ = 0, the acceleration simplifies:

ar = vr
∂vr
∂r

= (1.22)(9.26) = 11.3 m/s2,

aθ = vr
∂vθ
∂r

+
vrvθ
r

= (1.22)(0) + 0 = 0.

Thus, the acceleration is:
a = 11.3êr m/s2.
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Compute Vorticity

The vorticity is given by:
ω = ∇×V.

The only nonzero component is:

ωz =
1

r

(
∂

∂r
(rvθ)−

∂vr
∂θ

)
Substituting values:

ωz =
1

0.6
(0)− (0) = 0.

Thus, the vorticity is:
ω = 0.

Final Answers:

• Acceleration: 11.3êr m/s2

• Vorticity: 0 rad/s
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