GATE PATHSHALA

Properties of Fluids

Author Name: Mohd Abrar Nizami

April 8, 2025

1. Density ρ

 $\rho = \frac{m}{V}$

Where:

 $\rho = \text{Density } [\text{kg/m}^3]$

m = Mass [kg]

 $V = \text{Volume [m^3]}$

2. Specific Weight γ

 $\gamma = \rho q$

Where:

 $\gamma = \text{Specific weight } [\text{N/m}^3]$

 $g = \text{Gravitational acceleration} \approx 9.81 \,\text{m/s}^2$

3. Specific Volume v

 $v = \frac{1}{a}$

Where:

 $v = \text{Specific volume } [\text{m}^3/\text{kg}]$

4. Specific Gravity SG

$$SG = \frac{\rho_{\rm fluid}}{\rho_{\rm water}}$$

Where:

SG = Specific gravity (dimensionless)

 $\rho_{\text{fluid}} = \text{Density of fluid}$

 $\rho_{\rm water} \approx 1000 \, {\rm kg/m^3}$

5. Dynamic Viscosity μ

$$\tau = \mu \frac{du}{dy}$$

Where:

$$\begin{split} \tau &= \text{Shear stress [Pa = N/m^2]} \\ \mu &= \text{Dynamic viscosity [Pa \cdot s]} \\ \frac{du}{dy} &= \text{Velocity gradient} \end{split}$$

6. Kinematic Viscosity ν

$$\nu = \frac{\mu}{\rho}$$

Where:

 $\nu = \text{Kinematic viscosity } [\text{m}^2/\text{s}]$

7. Bulk Modulus of Elasticity K

$$K = -V\frac{dP}{dV} = \rho \frac{dP}{d\rho}$$

Where:

$$\begin{split} K &= \text{Bulk modulus [Pa]} \\ P &= \text{Pressure}, \, V = \text{Volume} \end{split}$$

8. Compressibility β

$$\beta = \frac{1}{K} = -\frac{1}{V}\frac{dV}{dP}$$

Where:

 $\beta = \text{Compressibility } [\text{Pa}^{-1}]$

9. Vapor Pressure P_{vap}

Definition: Pressure at which a liquid is in equilibrium with its vapor. Units: [Pa]

10. Surface Tension σ

Definition: Force per unit length at fluid interface.

Units: [N/m]

11. Capillary Rise/Depression h

$$h = \frac{2\sigma\cos\theta}{\rho gr}$$

Where:

h = Capillary rise or fall [m]

 $\theta = \text{Contact angle}$

 $\sigma = \text{Surface tension [N/m]}$

 $\rho = \text{Density [kg/m}^3]$

r = Radius of tube [m]

12. Ideal Gas Law

Specific form:

$$P=\rho RT$$

Molar form:

$$PV = nRT$$

Where:

P = Pressure [Pa]

 $\rho = \text{Density [kg/m}^3]$

T = Absolute temperature [K]

R = Gas constant

n =Number of moles

V = Volume

13. Speed of Sound c

In liquids:

$$c = \sqrt{\frac{K}{\rho}}$$

In ideal gases:

$$c = \sqrt{\gamma \frac{P}{\rho}}$$

Where:

c =Speed of sound [m/s]

 $\gamma = \text{Ratio of specific heats } C_p/C_v$

14. Relationship Between Atmospheric Pressure and Gauge Pressure

$$P_{\text{absolute}} = P_{\text{gauge}} + P_{\text{atm}}$$

Where:

- P_{absolute} : Absolute pressure pressure measured relative to a perfect vacuum.
- \bullet P_{gauge} : Gauge pressure pressure measured relative to atmospheric pressure (typical gauge reading).
- P_{atm} : Atmospheric pressure standard atmospheric pressure at sea level:

$$P_{\rm atm} \approx 101.325 \, \text{kPa} = 1 \, \text{atm} = 760 \, \text{mmHg}$$

Special Cases

1. Perfect vacuum:

$$P_{
m gauge} = -P_{
m atm}$$
pressure is zero)
 $P_{
m absolute} = P_{
m atm}$

(i.e., absolute pressure is zero)

2. Gauge reads zero:

$$P_{\text{absolute}} = P_{\text{atm}}$$