GATE PATHSHALA

Fluid Mechanics and Aerodynamics (Assignment-02)

Author Name: Mohd Abrar Nizami

March 14, 2025

Total Acceleration, Convective Acceleration, and Angular velocity

Problem 1

For the velocity field:

$$\mathbf{V} = 2xy\hat{i} + 4tz^2\hat{j} - yz\hat{k}$$

find the acceleration, the angular velocity about the z-axis, and the vorticity vector at the point (2, -1, 1) at t = 2.

Problem 2

What is the equation of the streamline that passes through the point (2, -1) when t = 2 s if the velocity field is given by:

(a)
$$\mathbf{V} = 2xy\mathbf{i} + y^2t\mathbf{j} \text{ m/s}$$

(b)
$$\mathbf{V} = 2y^2\mathbf{i} + xyt\mathbf{j} \text{ m/s}$$

Problem 3

Write all the non-zero terms of $D\rho/Dt$ for a stratified flow in which:

(a)
$$\rho = \rho(z)$$
 and $\mathbf{V} = z(2-z)\mathbf{i}$

(b)
$$\rho = \rho(z)$$
 and $\mathbf{V} = f(x, z)\mathbf{i} + g(x, z)\mathbf{j}$

Problem 4

Decide if each of the following can be modeled as an incompressible flow or a compressible flow:

(a) The take-off and landing of commercial airplanes

- (b) The airflow around an automobile
- (c) The flow of air in a hurricane
- (d) The airflow around a baseball thrown at 100 mi/h

Problem 5

Select the word: uniform, one-dimensional, two-dimensional, or three-dimensional, which best describes each of the following flows:

- (a) Developed flow in a pipe
- (b) Flow of water over a long weir
- (c) Flow in a long, straight canal
- (d) The flow of exhaust gases exiting a rocket
- (e) Flow of blood in an artery
- (f) Flow of air around a bullet
- (g) Flow of blood in a vein
- (h) Flow of air in a tornado

Problem 6

To determine the rate of change of temperature of a fluid particle, we use the material derivative:

$$\frac{DT}{Dt} = \frac{\partial T}{\partial t} + \mathbf{V} \cdot \nabla T$$

Given:

• Velocity field:

$$V = 2y\mathbf{i} + x\mathbf{j} + t\mathbf{k}$$

• Temperature field:

$$T(x, y, z) = 20xy$$

• Point: (x, y, z) = (2, 1, -2) at t = 2

Problem 7

Determine the velocity V in the pipe if the fluid in the pipe of Figure(p7) is:

- (a) Atmospheric air and h = 40 cm of water
- (b) Water and h = 20 cm of mercury
- (c) Kerosene and h = 30 cm of mercury
- (d) Gasoline and h = 80 cm of water

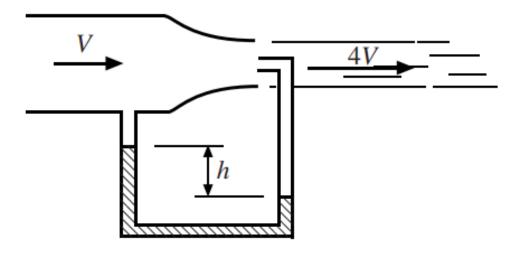


Figure 1: p7

Problem 8

A velocity field is given in cylindrical coordinates as:

$$v_r = \left(4 - \frac{1}{r^2}\right) \sin \theta \quad \text{m/s},$$

$$v_\theta = -\left(4 + \frac{1}{r^2}\right) \cos \theta \quad \text{m/s},$$

$$v_z = 0.$$

Find:

- 1. The acceleration at the point $(0.6 \text{ m}, 90^{\circ})$.
- 2. The vorticity at the point $(0.6 \text{ m}, 90^{\circ})$.