GATE PATHSHALA

Fluid Mechanics and Aerodynamics (Assignment-01: Solutions)

Author Name: Mohd Abrar Nizami

March 16, 2025

Total Acceleration, Convective Acceleration, and Local Acceleration

Concept Recap

The total acceleration of a fluid particle in a **3D** unsteady flow is given by the material derivative of velocity:

$$\mathbf{a} = \frac{D\mathbf{V}}{Dt} = \frac{\partial \mathbf{V}}{\partial t} + (\mathbf{V} \cdot \nabla)\mathbf{V}$$
 (1)

where:

- $\frac{\partial \mathbf{V}}{\partial t}$ is the **local acceleration** (due to unsteady effects).
- $(\mathbf{V} \cdot \nabla)\mathbf{V}$ is the **convective acceleration** (due to spatial changes in velocity).

In Cartesian coordinates, if V = (u, v, w), then the components of acceleration are:

$$a_x = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}, \tag{2}$$

$$a_{y} = \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z}, \tag{3}$$

$$a_z = \frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z}.$$
 (4)

Acceleration Formula in Cylindrical Coordinates

The total acceleration in cylindrical coordinates is given by:

$$a_r = \frac{\partial V_r}{\partial t} + V_r \frac{\partial V_r}{\partial r} + \frac{V_\theta}{r} \frac{\partial V_r}{\partial \theta} + V_z \frac{\partial V_r}{\partial z} - \frac{V_\theta^2}{r}, \tag{5}$$

$$a_{\theta} = \frac{\partial V_{\theta}}{\partial t} + V_{r} \frac{\partial V_{\theta}}{\partial r} + \frac{V_{\theta}}{r} \frac{\partial V_{\theta}}{\partial \theta} + V_{z} \frac{\partial V_{\theta}}{\partial z} + \frac{V_{r} V_{\theta}}{r}, \tag{6}$$

$$a_z = \frac{\partial V_z}{\partial t} + V_r \frac{\partial V_z}{\partial r} + \frac{V_\theta}{r} \frac{\partial V_z}{\partial \theta} + V_z \frac{\partial V_z}{\partial z}.$$
 (7)

Question 1: Understanding Total Acceleration

A velocity field in two-dimensional flow is given as:

$$\mathbf{V} = (2xy)\mathbf{i} + (x^2 + y^2)\mathbf{j}$$

Find the total acceleration at the point (1,2).

Solution:

Total acceleration is given by:

$$\mathbf{a} = \frac{\partial \mathbf{V}}{\partial t} + (\mathbf{V} \cdot \nabla) \mathbf{V}$$

Since the velocity field does not explicitly depend on time, the **local acceleration** is zero:

$$\frac{\partial \mathbf{V}}{\partial t} = 0$$

Now, computing the convective acceleration:

$$(\mathbf{V} \cdot \nabla)\mathbf{V} = \left(u\frac{\partial}{\partial x} + v\frac{\partial}{\partial y}\right)\mathbf{V}$$

Given u = 2xy, $v = x^2 + y^2$, we compute the partial derivatives:

$$\begin{split} \frac{\partial u}{\partial x} &= 2y, & \frac{\partial u}{\partial y} &= 2x, \\ \frac{\partial v}{\partial x} &= 2x, & \frac{\partial v}{\partial y} &= 2y. \end{split}$$

Convective acceleration components:

$$a_{x} = u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y}$$

$$= (2xy)(2y) + (x^{2} + y^{2})(2x)$$

$$= 4xy^{2} + 2x(x^{2} + y^{2})$$

$$= 4xy^{2} + 2x^{3} + 2xy^{2}$$

$$= 6xy^{2} + 2x^{3}$$

$$a_{y} = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y}$$

$$= (2xy)(2x) + (x^{2} + y^{2})(2y)$$

$$= 4x^{2}y + 2y(x^{2} + y^{2})$$

$$= 4x^{2}y + 2yx^{2} + 2y^{3}$$

$$= 6x^{2}y + 2y^{3}$$

Evaluating at (1, 2):

$$a_x = 6(1)(2)^2 + 2(1)^3$$

= 6(4) + 2(1)
= 24 + 2 = 26,

$$a_y = 6(1)^2(2) + 2(2)^3$$

= 12 + 16
= 28.

Thus, the total acceleration is:

$$\mathbf{a} = (26\mathbf{i} + 28\mathbf{j}) \text{ m/s}^2$$

Question 2: Local and Convective Acceleration Components in cylindrical coordinates in 2D

A fluid velocity in cylindrical coordinates is given as:

$$V_r = 3r^2t, \quad V_\theta = 2r\theta$$

Find the local acceleration and convective acceleration at $(r, \theta) = (2, \frac{\pi}{4})$ when t = 1.

Solution:

Local Acceleration

The local acceleration components are:

$$a_r^{(local)} = \frac{\partial V_r}{\partial t},$$
 $a_{\theta}^{(local)} = \frac{\partial V_{\theta}}{\partial t}.$

Computing the partial derivatives:

$$\frac{\partial V_r}{\partial t} = 3r^2, \qquad \frac{\partial V_\theta}{\partial t} = 0.$$

At $r = 2, \theta = \frac{\pi}{4}, t = 1$:

$$a_r^{(local)} = 3(2)^2 = 12,$$

 $a_{\theta}^{(local)} = 0.$

Convective Acceleration

The convective acceleration components in cylindrical coordinates are:

$$a_r^{(conv)} = V_r \frac{\partial V_r}{\partial r} + \frac{V_\theta}{r} \frac{\partial V_r}{\partial \theta} - \frac{V_\theta^2}{r},$$

$$a_\theta^{(conv)} = V_r \frac{\partial V_\theta}{\partial r} + \frac{V_\theta}{r} \frac{\partial V_\theta}{\partial \theta} + \frac{V_r V_\theta}{r}.$$

Compute Partial Derivatives

$$\begin{split} \frac{\partial V_r}{\partial r} &= 6rt, \\ \frac{\partial V_r}{\partial \theta} &= 0, \\ \frac{\partial V_{\theta}}{\partial r} &= 2\theta, \\ \frac{\partial V_{\theta}}{\partial \theta} &= 2r. \end{split}$$

Compute $a_r^{(conv)}$

$$a_r^{(conv)} = (3r^2t)(6rt) + \frac{(2r\theta)}{r}(0) - \frac{(2r\theta)^2}{r}$$
$$= 18r^3t^2 - \frac{4r^2\theta^2}{r}.$$

Evaluating at $r = 2, \theta = \frac{\pi}{4}, t = 1$:

$$a_r^{(conv)} = 18(2)^3 (1)^2 - \frac{4(2)^2 (\pi/4)^2}{2}$$
$$= 144 - \frac{16\pi^2}{32}$$
$$= 144 - \frac{\pi^2}{2}.$$

Approximating $\pi^2 \approx 9.8696$:

$$a_r^{(conv)} \approx 144 - 4.9348 = 139.07.$$

Compute $a_{\theta}^{(conv)}$

$$a_{\theta}^{(conv)} = (3r^{2}t)(2\theta) + \frac{(2r\theta)}{r}(2r) + \frac{(3r^{2}t)(2r\theta)}{r}$$
$$= 6r^{2}t\theta + 4r\theta + 6r^{2}t\theta$$
$$= 12r^{2}t\theta + 4r\theta.$$

Evaluating at $r = 2, \theta = \frac{\pi}{4}, t = 1$:

$$a_{\theta}^{(conv)} = 12(2)^{2} \frac{\pi}{4} + 4(2) \frac{\pi}{4}$$
$$= 12(4) \frac{\pi}{4} + 8 \frac{\pi}{4}$$
$$= 12\pi + 2\pi = 14\pi.$$

Approximating $14\pi \approx 43.98$.

Total Acceleration

Summing the local and convective accelerations:

$$\begin{split} a_r &= a_r^{(local)} + a_r^{(conv)} = 12 + 139.07 = 151.07, \\ a_\theta &= a_\theta^{(local)} + a_\theta^{(conv)} = 0 + 43.98 = 43.98. \end{split}$$

Thus, the corrected total acceleration is:

$$\mathbf{a} \approx (151.07\mathbf{e_r} + 43.98\mathbf{e_\theta}) \text{ m/s}^2.$$

Question 3

Find the Total Acceleration in a Given Flow Field **Problem:** Given the velocity field:

$$\mathbf{V} = (u, v, w) = (x^2 t, y t^2, z t^3),$$

find the total acceleration **a** at the point (x, y, z, t) = (1, 2, 3, 1).

Solution

Compute Local Acceleration $\frac{\partial \mathbf{V}}{\partial t}$:

$$\frac{\partial u}{\partial t} = x^2, \quad \frac{\partial v}{\partial t} = 2yt, \quad \frac{\partial w}{\partial t} = 3zt^2.$$

At (1, 2, 3, 1):

$$\frac{\partial u}{\partial t} = 1, \quad \frac{\partial v}{\partial t} = 4, \quad \frac{\partial w}{\partial t} = 9.$$

Compute Convective Acceleration $(\mathbf{V} \cdot \nabla)\mathbf{V}$:

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z} = (x^2t)(2xt) + (yt^2)(0) + (zt^3)(0).$$

At (1, 2, 3, 1):

$$(1 \cdot 1)(2 \cdot 1) + (2 \cdot 1)(0) + (3 \cdot 1)(0) = 2.$$

Similarly,

$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + w\frac{\partial v}{\partial z} = (x^2t)(0) + (yt^2)(t^2) + (zt^3)(0).$$

At (1, 2, 3, 1):

$$(1 \cdot 1)(0) + (2 \cdot 1)(1) + (3 \cdot 1)(0) = 2.$$

$$u\frac{\partial w}{\partial x} + v\frac{\partial w}{\partial y} + w\frac{\partial w}{\partial z} = (x^2t)(0) + (yt^2)(0) + (zt^3)(t^3).$$

At (1, 2, 3, 1):

$$(1 \cdot 1)(0) + (2 \cdot 1)(0) + (3 \cdot 1)(1) = 3.$$

Total Acceleration:

$$a_x = 1 + 2 = 3$$
, $a_y = 4 + 2 = 6$, $a_z = 9 + 3 = 12$.

Thus,

$$\mathbf{a} = (3, 6, 12).$$

Question 4

A fluid has a radial velocity field in cylindrical coordinates:

$$V_r = Are^{-t}, \quad V_\theta = 0, \quad V_z = Bzt.$$

Find the total acceleration in cylindrical coordinates.

Solution

Compute Local Acceleration

The local acceleration terms are:

$$\frac{\partial V_r}{\partial t} = -Are^{-t}, \quad \frac{\partial V_\theta}{\partial t} = 0, \quad \frac{\partial V_z}{\partial t} = Bz.$$

Compute Convective Acceleration

Radial Component:

$$V_r \frac{\partial V_r}{\partial r} = (Are^{-t}) \frac{\partial}{\partial r} (Are^{-t}) = (Are^{-t}) (Ae^{-t}) = A^2 re^{-2t}.$$

Since $V_{\theta} = 0$, the term $-\frac{V_{\theta}^2}{r}$ is zero, and the convective acceleration from V_z is also zero.

Thus, the total acceleration in:

Radial direction:

$$a_r = -Are^{-t} + A^2re^{-2t}.$$

Tangential Component:

$$a_{\theta} = 0.$$

Axial Component:

$$V_r \frac{\partial V_z}{\partial r} = (Are^{-t}) \frac{\partial}{\partial r} (Bzt) = (Are^{-t})(0) = 0,$$

$$\frac{V_{\theta}}{r} \frac{\partial V_z}{\partial \theta} = 0,$$

$$V_z \frac{\partial V_z}{\partial z} = (Bzt) \frac{\partial}{\partial z} (Bzt) = (Bzt)(Bt) = B^2 z t^2.$$

Summing all contributions:

$$a_z = Bz + B^2 z t^2.$$

Final Answer

$$\mathbf{a} = \begin{bmatrix} -Are^{-t} + A^2re^{-2t} \\ 0 \\ Bz + B^2zt^2 \end{bmatrix}.$$

Question 5: Total Acceleration

The velocity field in two dimensions is given as:

$$\mathbf{V} = (u, v) = (x^2 t, y t^2)$$

We need to find the total acceleration:

$$\mathbf{a} = \frac{D\mathbf{V}}{Dt} = \frac{\partial \mathbf{V}}{\partial t} + (\mathbf{V} \cdot \nabla)\mathbf{V}$$

Compute the Local Acceleration

The local acceleration is given by:

 $\frac{\partial \mathbf{V}}{\partial t}$

For $u = x^2t$:

$$\frac{\partial u}{\partial t} = x^2$$

For $v = yt^2$:

$$\frac{\partial v}{\partial t} = 2yt$$

Thus,

$$\frac{\partial \mathbf{V}}{\partial t} = (x^2, 2yt)$$

Compute the Convective Acceleration

The convective acceleration is given by:

$$(\mathbf{V} \cdot \nabla)\mathbf{V} = \left(u\frac{\partial}{\partial x} + v\frac{\partial}{\partial y}\right)\mathbf{V}$$

For the x-component (u):

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}$$

$$= (x^2t)\frac{\partial}{\partial x}(x^2t) + (yt^2)\frac{\partial}{\partial y}(x^2t)$$

$$= (x^2t)(2xt) + (yt^2)(0)$$

$$= 2x^3t^2$$

For the y-component (v):

$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y}$$

$$= (x^2t)\frac{\partial}{\partial x}(yt^2) + (yt^2)\frac{\partial}{\partial y}(yt^2)$$

$$= (x^2t)(0) + (yt^2)(t^2)$$

$$= yt^4$$

Thus,

$$(\mathbf{V} \cdot \nabla)\mathbf{V} = (2x^3t^2, yt^4)$$

Compute the Total Acceleration

$$\mathbf{a} = \frac{\partial \mathbf{V}}{\partial t} + (\mathbf{V} \cdot \nabla) \mathbf{V}$$
$$= (x^2, 2yt) + (2x^3t^2, yt^4)$$
$$= (x^2 + 2x^3t^2, 2yt + yt^4)$$

Final Answer

$$\mathbf{a} = (x^2 + 2x^3t^2, 2yt + yt^4)$$

Question 6: Total Acceleration in Polar Coordinates

A velocity field in polar coordinates is given as:

$$V_r = r^2 t, \quad V_\theta = r t^2$$

Compute the total acceleration components.

Total Acceleration Formula in 2D

The total acceleration in polar coordinates is given by:

Radial Component:

$$a_r = \frac{\partial V_r}{\partial t} + V_r \frac{\partial V_r}{\partial r} + \frac{V_\theta}{r} \frac{\partial V_r}{\partial \theta} - \frac{V_\theta^2}{r}$$

Tangential Component:

$$a_{\theta} = \frac{\partial V_{\theta}}{\partial t} + V_{r} \frac{\partial V_{\theta}}{\partial r} + \frac{V_{\theta}}{r} \frac{\partial V_{\theta}}{\partial \theta} + \frac{V_{r} V_{\theta}}{r}$$

Computing Partial Derivatives

Time Derivatives:

$$\frac{\partial V_r}{\partial t} = r^2, \quad \frac{\partial V_\theta}{\partial t} = 2rt$$

Spatial Derivatives:

$$\frac{\partial V_r}{\partial r} = 2rt, \quad \frac{\partial V_{\theta}}{\partial r} = t^2$$

$$\frac{\partial V_r}{\partial \theta} = 0, \quad \frac{\partial V_{\theta}}{\partial \theta} = 0$$

Computing Acceleration Components

Radial Acceleration:

$$a_r = \frac{\partial V_r}{\partial t} + V_r \frac{\partial V_r}{\partial r} + \frac{V_\theta}{r} \frac{\partial V_r}{\partial \theta} - \frac{V_\theta^2}{r}$$
$$= r^2 + (r^2 t)(2rt) + 0 - \frac{(rt^2)^2}{r}$$
$$= r^2 + 2r^3 t^2 - rt^4$$

Tangential Acceleration:

$$a_{\theta} = \frac{\partial V_{\theta}}{\partial t} + V_r \frac{\partial V_{\theta}}{\partial r} + \frac{V_{\theta}}{r} \frac{\partial V_{\theta}}{\partial \theta} + \frac{V_r V_{\theta}}{r}$$

$$= (2rt) + (r^2t)(t^2) + 0 + \frac{(r^2t)(rt^2)}{r}$$

$$= 2rt + r^2t^3 + r^3t^3/r$$

$$= 2rt + r^2t^3 + r^2t^3$$

$$= 2rt + 2r^2t^3$$

Final Answer

$$a_r = r^2 + 2r^3t^2 - rt^4$$
$$a_\theta = 2rt + 2r^2t^3$$

This gives the total acceleration vector in polar coordinates.